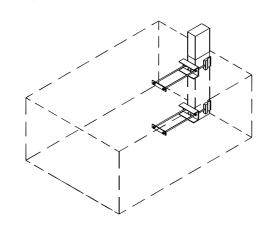
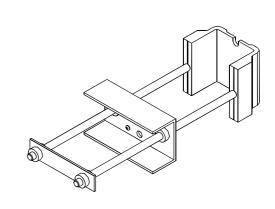
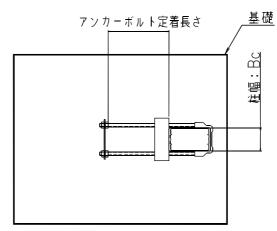
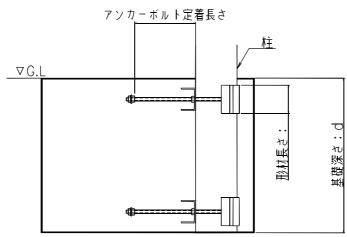
基礎構造計算書


商品名: M.シェードⅡ上吊り


サイズ: _____5883-26H

※ M.シェードⅡ上吊りタイプ において 最も条件の厳しいタイプ・サイズにて検討

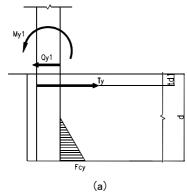

【基礎構造概略図】

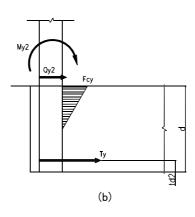

【基礎金具図】

【基礎断面図】

1. 偏芯基礎部品の検討

1-1 アンカーボルト


① アンカーボルト引張り


荷重値

	N:軸力(N)	Qy: せん断力(N)	M'x:モーメント(N⋅m)
長期荷重	1096.2	0.0	2331.4
短期積雪	9362.0	0.0	22058.6
短期風吹上げ	-10316.2	-2002.0	-30991.6
短期風吹下げ	7943.7	2002.0	24759.6

コンクリートの降伏支圧強度:Fcy(=Fc×2/3=ft)=

アンカーボルト許容引張り応力度:fto SS400 235 N/mm² アンカーボルトねじ呼び: 157 mm² M16 コンクリート設計基準強度:Fc= 18 N/mm²

·吹上荷重方向(a)

引張りとせん断を同時に受ける場合のボルトの引張り応力度: f_{ts} f_{ts} =1.4* f_{to} -1.6* τ =

302.7

235 N/mm²

12 N/mm²

かつ、f_{ts}≦f_{to}より

埋込柱脚の許容モーメントMyは下式にて求められる。(日本建築学会 鋼構造接合部設計指針)

$$M_{y} = \left\{ T_{y} - \frac{3}{4} F_{cy} \cdot B_{c} (l+d) + \sqrt{\frac{9}{16} F_{cy}^{2} \cdot B_{c}^{2} (l+d)^{2} - \frac{3}{2} F_{cy} \cdot B_{c} \cdot T_{y} (l+d)} \right\} \cdot l$$

アンカー降伏軸力:Ty= 73790 N

Ty₂:アンカー1本辺り= 基礎深さ:d=

36895 N

柱幅:Bc=

150 mm

87 mm

650 mm

アンカー中心から基礎上端までの距離:_td1= 基礎上端より柱の反曲点までの距離: I=M/Q=

15.48 m 38061 N·m

以上より、埋込柱脚の許容モーメント My= 柱の降伏モーメント: cMsy=

41996 N·m

柱の柱脚にかかる最大モーメント:M=

30992 N·m

埋込柱脚の許容モーメントとの比は M/My=

0.81 **< 1.0 OK!**

·鉛直荷重方向(b)

引張りとせん断を同時に受ける場合のボルトの引張り応力度: f_{ts} f_{ts} =1.4* f_{to} =1.6* τ = 308.8 かつ、f_{ts}≦f_{to}より 235 N/mm²

埋込柱脚の許容モーメントMyは下式にて求められる。(日本建築学会 鋼構造接合部設計指針)

$$M_{y} = \left\{ -\left(\frac{3}{4}F_{cy} \cdot B_{c} \cdot l + T_{y}\right) + \sqrt{\frac{9}{16}F_{cy}^{2} \cdot B_{c}^{2} \cdot l^{2} + \frac{3}{2}F_{cy} \cdot B_{c} \cdot T_{y}(l + d - d)} \right\} \cdot l$$

アンカー降伏軸力:Tv=

Ty2:アンカー1本辺り= 基礎深さ:d=

柱幅:Bc= 150 mm アンカー中心から基礎下端までの距離:,d2= 基礎上端より柱の反曲点までの距離: I=M/Q= 以上より、埋込柱脚の許容モーメント My=

87 mm

36895 N 650 mm

12.37 m 39349 N·m 41996 N·m

柱の降伏モーメント: cMsy= 柱の柱脚にかかる最大モーメント: M=

24760 N·m

埋込柱脚の許容モーメントとの比は M/My=

0.63 **<1.0 OK!**

③ 形材の軸芯ズレによる曲げ

軸芯ズレ量: e= 29 mm 肉厚: 18 mm 形材長さ: 160 mm 断面積: A= 2880 mm²

軸芯ズレによる曲げモーメントはM= T_2 ・e σ = σ_t + σ_b = T_2 /A+M/Z=f(降伏応力度)となる T_2 を求める σ_t = T_2 /A, σ_b =e* T_2 /Z,f=165(N/mm 2)

165= $T_2/A+e*T_2/Z$ より T_2 = 44550 N

アンカーの降伏軸力との比は

 Ty_2/T_2 = 0.83 **<1.0 OK!**

④ 形材フィンの曲げ

許容曲げ耐力(短期) 165 N/mm² 支点間距離 ℓ : 29 mm 形材長さ b : 160 mm 肉厚 h : 18 mm Z=(b×h²)/6 8640.0 mm³ 許容曲げ耐力 Ty₂=M/ℓ=fb・Z/ℓ 49158.6 N

 Ty_2/T_2 = 0.75 <1.0 OK!

⑤ 柱後部の肉厚

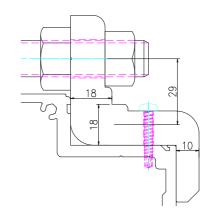
柱後部のせん断許容荷重

形材切断長さ b 160 mm 柱後部の金具肉厚 t 10 mm 許容せん断力 $F=f/\sqrt{3}$ 95.3 N/mm^2 許容せん断耐力 $T_2=b\cdot t\cdot F$ 152420.5 N

 Ty_2/T_2 = 0.24 <1.0 OK!

⑥ ポルト頭部せん断

ボルト数n= 1 本 ボルト頭部外周長S= 83.1 mm


頭部材質の許容せん断応力は SS400 235 N/mm²

頭部厚をtとするとt= 4.5 mm

T₃= 50737 N

アンカーの降伏軸力との比は

 $Ty_2/T_3 = 0.73 < 1.0 OK!$

1-2 コンクリート(頭付きアンカーボルト)

① コンクリートコーン破壊

有効水平投影面積: Ac= 80519 mm² アンカーボルト定着長さ 200 mm コーン破壊に対するコンクリートの引張強度:。 σ_t =0.31 $\sqrt{(Fc)}$ =

低減係数: ϕ_2 = 表1より求める

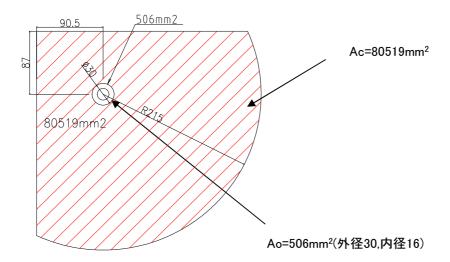
表1 低減係数

<u> </u>		
	ϕ_2	
長期荷重用	1/3	
短期荷重用	2/3	

70600 N 許容引張荷重: T₄=p_{a2}=φ₂*_cσ_t*Ac= $Ty_2/T_4=$ アンカーの降伏軸力との比は 0.52 **< 1. 0 OK!**

② アンカーボルト頭部コンクリート支圧

内径:d= 外径:D= 30 mm 16 mm


1.32 N/mm²

アンカーボルト頭部のコンクリート支圧面積: $A_0 = \pi (D^2 - d^2)/4 =$ 506 mm² コンクリート支圧強度:f_n=√(Ac/A₀)×Fc $\sqrt{(Ac/A_0)}$ = 12.6 但し、√(Ac/A₀)>6の場合、√(Ac/A₀)=6より √(Ac/A₀)= 6.0

以上よりf_n= 108 N/mm²

許容引張力T5=f1*A0= 54626 N

アンカーの降伏軸力との比は Ty₂/T₅= 0.68 **<1.0 OK!**

